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Overview

• Project start date  6/1/06
• Project end date   5/31/08
• Percent complete 100% 

Budget

• Barriers addressed
– High chemical and mechanical  

degradation rate of Nafion®

– Poor membrane dimensional 
stability against humidity 
change in fuel cells

– High fuel crossover 
– Low proton conductivity• Total project funding

– DOE share $495,000
– Contractor share

• Funding received in FY07
– $495,000

• Funding for FY08/09
– $1,000,000

Timeline Barriers

• Interactions / collaborations
Illinois Institute of Technology
Project lead: Dr. Vijay Ramani,
Dept. Chemical Engineering 
(unfunded)

Partners



Objectives

1. Evaluate chemical degradation via dielectric 
spectroscopy

2. Generate metal oxide quasi-network particles 
using in situ sol-gel processes for inorganic 
alkoxide monomers in Nafion® membranes.

3. Characterize structure/properties/FC 
performance of (2).

4. Enhance Nafion® chemical and mechanical 
durability via optimization of Nafion®/[metal 
oxide] nanocomposite membrane composition.



Milestones
Task Completion Date

Task
Number Project Milestones

Original Planned Percent  Complete

1 Acquisition of Equipment 10/31/06 100% Complete

2
Development of

Characterization Methods 2/28/07 100% Complete

3
Inorganic Modification of 

Membranes 6/30/07 100% Complete

4 Membrane Durability Studies 10/31/07 100% Complete

Progress Notes



Approach
• Sol-gel processes to generate metal oxide nanoparticles in 

Nafion® sulfonic acid clusters causing mechanical 
reinforcement.

• Improve membrane modulus and dimensional stability under 
swell - de-swell. 

• Reduce fuel crossover and minimize chemical degradation.
• Dielectric analysis of chemically degraded Nafion membranes
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Domain targeted sol-gel reactions
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Early region of stress-strain curves at 
80o C, 100% RH

Titania reinforcement reduces swelling and improves 
membrane modulus and dimensional stability 
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Modulus 
(MPa)

Length increase due to 
humidity change (%)

Strain at break 
(mm/mm)

Stress at break 
(MPa)

Nafion®/Titania 120.4 + 7.1 5.7 + 1.0 3.1 + 0.2 24.1 + 1.68 

Nafion® 36.2 + 7.2 10.0 + 3.2 4.1 + 0.4 20.8 + 3.2



Contractile Stress response to Humidity Drop 
from 100% to 0% at 80o C
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Unfilled and filled Nafion® after drying-contractile 
stress vs. time test

Arrow indicates direction of contractile
stress exerted by sample during drying

--- regions of damage by SEM

Titania/Nafion®Nafion®



Equivalent weight, water uptake, 
proton conductivity

• Acid functionality remains 
intact - reaction with, 
interference by titania
quasi-networks.

• Water uptake reduced as 
volume inside clusters is 
occupied by inorganic 
network.

• Conductivity reduced due 
to restricted polymer chain 
mobility or/and increased 
tortuosity of proton 
conduction pathways.
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Accelerated OCV test at 100o C, 25% RH
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Fluoride emission rates 
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FC performance curves at 80o C, 75% RH 
before and after OCV

• Before OCV test, composite 
membrane has  poor performance 
due to low water uptake and 
restricted polymer chain mobility.

• Nafion® membrane showed 
significant performance loss after 
OCV degradation test.

• Composite membrane 
performance is intact after OCV 
degradation test.

• Titania reinforcement minimized 
membrane degradation due to 
improved mechanical and gas 
barrier  properties.
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Hydrogen crossover current at ambient 
temperature before and after accelerated 

OCV test

• Hydrogen crossover current 
more for composite membrane 
before OCV test 

• After OCV test, increase in 
crossover current for Nafion®
is higher than that of composite 
membrane 
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SEM: 75h film exposure         
to Fenton’s reagent soln.     

(post-degradation cut) 

75h film exposure to Fenton’s reagent

rupture crack

Accelerated Chemical Degradation



Dielectric loss factor vs. ƒ for degraded and 
non-degraded Nafion® at 60 °C

d.c. conductivity slope ≈ 1fmax↓ with degradation

Relaxation time (τ) = 1/(2πfmax) 
decreases

Chain conformation dynamics, 
Tg – related motions

Slower motions with degradation

a. Shift to higher MW

b.  Complexation around SO3H

d.c. conductivity at low f.
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Future Work
• In-depth studies of relationship between dielectric 

spectra and Nafion® macromolecular fragmentation.
• Optimization of inorganic oxide quasi-network structure 

so durability can be achieved without sacrificing 
membrane performance.

• Composite membrane MEAs will be subjected to 
various current and humidity cycles to test mechanical 
durability. 

• Oxygen and hydrogen permeability under different 
temperature and humidity conditions will studied. 

• Composite membranes for direct methanol fuel cell 
applications will be tested. 



Summary
• Dielectric spectroscopy is a powerful tool for 

probing macromolecular motions in Nafion® and 
molecular weight degradation.

• Nafion® membrane in situ – grown titania
nanoparticles improved barrier and mechanical 
properties and enhanced membrane durability 
by reducing physical and chemical degradation. 

• Domain-targeted network incorporation pointed 
to a new route for prolonging the life of fuel cell 
membranes. 


	Overview
	Objectives
	Milestones
	Approach
	Domain targeted sol-gel reactions
	Early region of stress-strain curves at 80o C, 100% RH
	Contractile Stress response to Humidity Drop from 100% to 0% at 80o C
	Unfilled and filled Nafion® after drying-contractile stress vs. time test�
	Equivalent weight, water uptake, �proton conductivity
	Accelerated OCV test at 100o C, 25% RH
	Fluoride emission rates 
	FC performance curves at 80o C, 75% RH before and after OCV
	Hydrogen crossover current at ambient temperature before and after accelerated OCV test 
	Dielectric loss factor vs. ¦ for degraded and non-degraded Nafion®  at 60 oC
	Future Work
	Summary



